
Messaging HLD for Enstore Small Files Aggregation Project

Alex Kulyavtsev

6/04/2010 v0.8

1 Introduction

To impelemt Small Files Aggregation feature in Enstore we introduce several new components:
 Disk Mover

- cache frontend, the component which reads files from or writes files to cache. In the future it can
be any other Data Delivery Service (DDS) component.

 Policy Engine (PE)
- the engine to implement busines logic, e.g. to reorder requests to group files on write.

 Migration Dispatcher
- central component to dispatch execution of work items (migrate file, restore file, ...) to
Migrators (workers) to and track execution of requests.

 Migrator
- on of several workers distributed among Migrator Nodes responcible for execution of one item
of work: file aggregation and/or writing and reading data containers to/from tape backend.
Migrators execute vanilla encp to perform data transfer to/from tape.

To impement interaction between newly added enstore components for Small Files Aggregation feature
we plan to use Adavance Message Queing Protocol (AMQP). AMQP standartize both messaging and
wire protocol and provides standard way to implement fast, secure and reliable communication in
language independent way. Enstore is written in Python and most most Open Source Complex Event
Processing Engines to be used as Policy Engine are written in Java.

2 Functional specification

AMQP specifies datatypes on the wire as various integer and float data types, timestamp, UUID and

also complex data types such as map, list and array (array will be replaced by list). Complex

datatypes can be nested. This allows simple transfer of nested python dictionaries used in enstore
messages. On java side python dictionaries are converted transparently to java Maps. In its turn java
maps can be used by Esper CEP engine to represent CEP events. The other alternative is to use XML
representation both in messages and PE, this will allow message format check and simple message
filtering by AMQP brokers. Term “map” used in discussion below can be substituted by “dictionary”
when used by python client.

We use standard AMQP features (message routing, reliable delivery, percistence, security, etc).
AMPQ message consists of Message Header and Message Body. The Message Body is opaque and
AMQP does not specify or care about its properties. Message Header consists of fields specific for

AMQP protocol. Message Header has message_properties.application_headers map

where application can put any information. At present we intent to put Enstore specific message

features into application_headers map and do not use message body. We may use Message

Body field for bulk messages and/or when fast access to message payload is not required be messaging
system.

2.1 AMQP Python quick example

The following is quick code example what data structures are available in AMQP and how message is
sent :

Nested_Dict = {
"string":"stringVal",
"int":1234,
"long": 2**32,
"map": {"string":"nested map"},
"list":[1,"two",3.0, -4]

}

#... get amqp session here ...

 # Create some messages and put them on the broker.
dp = session.delivery_properties(routing_key="routing_key")
message_properties = session.message_properties()
message_properties.content_encoding = "amqp/map"

set apllication header :
message_properties.application_headers = {}
message_properties.application_headers["my_nested_dictionary"] = Nested_Dict
message_properties.application_headers["my_tuple"] = (12345, 54321, ’hello!’)
create and send message. Message body can be empty.
msg = Message(message_properties, dp, "this is text message body")
session.message_transfer(destination="amq.direct", message=msg)

3 Enstore Message Properties

Now we define map (nested dictionary) enmsg in amqp application header to serve as enstore event or
command. The commands will be represented as constant strings in all capital letters as value.

• msg_type - component specific type of the message specifying payload, some kind of command
or event :

- command - command send to the peer.

- event - event generated in response to completed action or change of state

• msg_ver - tuple (int major, int minor)

Example 1

mp = session.message_properties()

mp.application_headers = {}

m = {}

m[“msg_type”] = “MD_COMMAND”

m[“msg_ver”] = (1, 0)

m[“command”] = “MD_STORE_FILES”

myArgs = {”a1”:”v1”, “a2”:123 }

m[“args”] = myArgs

mp.application_headers[“enmsg”] = m

4 Addressing

Policy Engine and Migration Dispatcher are singletons. They read messages from queue bonded to
direct exchange. There are multiple Migrators, probably with different properties. A goup of Migrator
with similar properties can read work-assigning messages from the same queue to implement load
balancing and HA.

The initial command assigning work is sent to direct exchange. Worker replies are sent directly to
sender using request-response mechanism described in “Server Application” section of MRG Tutorial
[MRG Tutorial]. Message routing_key specifies destination amqp node (client process), for

example migration_dispatcher, policy_engine, “some” fc_mover or specific mover

fc_mover.mvr1234 (name includes “.” to separate fields).

5 Component Interaction Through AMQP Messaging

5.1 Data Delivery Service (Disk Mover) and Migrator communication with Policy
Engine

5.1.1 Description
Event reflects changes in local cache or user namespace.

5.1.2 Parameters
msg_type : FC_EVENT // file cache event

event :

• CACHE_WRITTEN // file replica written to cache by client (DM)

• CACHE_MISS // client attempts to read file from cache and file not found in cache. Triggers
restore from tape & unpack (DM)

• CACHE_RELEASED // file copy removed from cache (MG)

• CACHE_RESTORED // file restored from tape to cache (MG)

msg_type : NS_EVENT // namespace event

• FILE_DELETED // file is deleted in user namespace (DM)

5.1.3 Detailed Parameters Description
msg_type : FC_EVENT // file cache event

event :

• CACHE_WRITTEN

- meaning: file written to cache. File can be created in namespace at the beginning of transfer, or
it can be writing of the file already existing in name space (such as dcache file).

- when: close() on write

- action: aggregate write requests and prepare list of file to be written. Send command
STORE_FILES to MD when needed.

• CACHE_MISS

- when: open() on read with cache miss - file not found in cache

- action: send command RESTORE_FILES to MD to read files from tape and unpack files.

• CACHE_RESTORED (FILE_MIGRATED ?)

- meaning : file restored from tape to cache

- action: release read pending transfers from cache to user

• CACHE_RELEASED (CACHE_PURGED ?)

- meaning: file copy removed from cache

- action: delete pending requests to store file if any. File can be released only if it has been
written to tape, otherwise this shall generate error reported by monitoring.

• FILE_DELETED

- meaning: file deleted in user namespace

- action: clear cache entry, delete pending requests to aggregate file. If multiple file aggregation
started, mark file as deleted but do not abort aggregating files.

5.2 Policy Engine communication with Migration Dispatcher

5.2.1 Parameters
msg_type : MD_COMMAND

command :

• MD_STORE_FILES // Package and Write to tape

• MD_RESTORE_FILES // Read from tape and Unpack

• MD_RELEASE_FILES // release cache entry

msg_type : MD_REPLY

reply :

• MD_FILES_STORED

• MD_FILES_RESTORED

• MD_FILES_RELEASED

5.2.2 Description
Policy Engine sends command to Migration Dispatcher. Migration Dispatcher gets message and accepts
the message (replies with acknowledge) and then work is executed asynchronyously. After completion
of the work Migration Dispatched sends message to report operation completion. The reply message
contains message ID of the original message it is reply to.

5.3 Migration Dispatcher communication with Migrator

5.3.1 Parameters
msg_type : MIGRATOR_COMMAND

command :

• MG_STORE_FILES (MIGRATE_FILES ?) // Package and Write package file to tape

• MG_RESTORE_FILES (STAGE_FILES?) // Read from tape and Unpack if needed

• MG_RELEASE_FILES (PURGE_FILES?) // Release cache entry

• MG_REPORT_PROGRESS // Direct message - query worker status and transfer progress

5.3.2 Description. Commands sent by Migration Dispatcher.
Operations on list of files where list may consist of single file. Migration Dispatcher controls file
packing/unpacking and also file transfer operations to/from tape by encp. MD sends commands above
to work queue where it read by Migrators. When the message retrieved from queue and work started,
Migrator sends message directly to Migrator informing it with direct address for communications.
Migrator Dispatcher may send query command to Migrator to check liveness and progress of the
transfer and Migrator replies to query command directly to Migration Dispatcher. When transfer
finished, Migrator sends final message reporting end of transfer and error status.

5.3.3 Description. Events and replies generated by Tape Backend interface
(Migrators)

Migrator sends out event to signal operation completion when the operation is completed with success
or error. These events correspond to commands sent by Migration dispatcher to Migrators. The event is
sent asynchroniously through direct exchange to original command source. The message has reference
to original command event and reports error code and error detail of the operation.

5.3.4 Parameters
msg_type : MIGRATOR_REPLY

reply :

• MIGRATOR_STATUS // Direct message. Message reporting progress of work in reply to
MG_REPORT_PROGRESS

msg_type : MIGRATOR_DONE // Direct message. Final message reporting completion of work.

event :

• FILE_MIGRATED (FILE_STORED ?)

• FILE_STAGED (FILE_RESTORED ?)

• FILE_RELEASED (FILE_PURGED?)

5.3.5 Return value
output : tuple error = [ierr, err_msg]

int ierr // error code ierr == 0 is success.

string err_msg // error message

6 Detailed Message Descriptions

6.1 CACHE_WRITTEN and CACHE_MISS events

CACHE_WRITTEN and CACHE_MISS events are used as input for policy decisions and potentially

carry most information compared to other messages. These event lead to file archiving or restore. We
provide following information in CACHE_WRITTEN and CACHE_MISS events to Policy Engine to

group and/or prioritize requests. Most of the message fields we use below are based on the fields of
enstore ticket. Some fields for write operation are not known at the time when message sent out and

thus not set, e.g. bfid for write operation. The vanilla encp ticket is included in message body, the

following fields are extracted into message header to be easily accessed (see next page):

ticket = {
 ’efc’: { # -- Enstore File Cache specific fields
 ’arc’: { # archive (tape backend)
 ’id’: ’cdf’, # archive name
 ’type’: ’enstore’ # archive type
 }
 ’ns’ : { # user namespace
 ’id’: ’cdf’, # namespace id
 ’type’: ’pnfs’, # user namespace description
 ’mnt’: ’/pnfs/fnal.gov’ # mount point in global namespace
 }
 ’efc’ : { # enstore file cache
 ’node’: ’cache01’, # node name / address
 ’mount’: ’/mnt/cache/’, # mount point of enstore cache
 ’path’: ’000E/0000/0000/0000/095D’, # cached file subpath
 ’name’: ’000E000000000000095D5220’, # file name in cache
 ’id’: '0x12345' # file handle in cache
 }
 },

 ’file’ : { # -- data file specific fields
 # the original file name :
 ’name’: ’/pnfs/fs/usr/Migration/cms/WAX/11/file.root’,
 # file ID in user namespace. String.
 ’id’: ’000E000000000000095D5220’
 ’size’: 663748608L, # file size in bytes
 # Checksum type (key) and value :
 ’crc_adler32’: 3298525413L, # (RD only)
 },
 ’enstore’ : { # -- Enstore backend specific fields
 ’bfid’: ’CDMS115785728500000’, # (RD only)
 ’vc’: { # from Volume Clerk :
 ’library’: ’CD-LTO4G1’, #
 ’storage_group’: ’cms’, #
 ’file_family’: ’Commissioning08’, #
 ’wrapper’: ’cpio_odc’, #
 ’file_family_width’: ’2’, #
 ’external_label’: ’VOM563’ # (RD only)
 ’volume_family’: ’cms.Commissioning08.cpio_odc’, # NA for W
 },
 # file location on tape from FC, (RD only)
 ’location_cookie’: ’0000_000000000_0000174’
 }
 }

Issues :
• there is no crc in enstore write ticket.

6.2 CACHE_RELEASED

File has been released on disk cache.
The ticket is same as CACHE_WRITTEN event, “enstore” entry is not required.

6.3 CACHE_RESTORED

 File has been staged to disk cache. The ticket is same as CACHE_MISS event, “enstore” entry is not

required.

References

[MRG Tutorial] Jonathan Robie, "Red Hat Enterprise MRG 1.1 Messaging Tutorial AMQP", Red Hat,
Inc, 2008

	1 Introduction
	Disk Mover
	Policy Engine (PE)
	Migration Dispatcher
	Migrator
	2 Functional specification
	2.1 AMQP Python quick example

	3 Enstore Message Properties
	Example 1

	4 Addressing
	5 Component Interaction Through AMQP Messaging
	5.1 Data Delivery Service (Disk Mover) and Migrator communication with Policy Engine
	5.1.1 Description
	5.1.2 Parameters
	5.1.3 Detailed Parameters Description

	5.2 Policy Engine communication with Migration Dispatcher
	5.2.1 Parameters
	5.2.2 Description

	5.3 Migration Dispatcher communication with Migrator
	5.3.1 Parameters
	5.3.2 Description. Commands sent by Migration Dispatcher.
	5.3.3 Description. Events and replies generated by Tape Backend interface (Migrators)
	5.3.4 Parameters
	5.3.5 Return value

	6 Detailed Message Descriptions
	6.1 CACHE_WRITTEN and CACHE_MISS events
	6.2 CACHE_RELEASED
	6.3 CACHE_RESTORED

	References

